Speech Recognition Using Dynamical Model of Speech Production
نویسنده
چکیده
We propose a speech recognition method based on the dynamical model of speech production. The model consists of an articulator and its control command sequences. The latter has linguistic information of speech and the former has the articulatory information which determines transformation from linguistic intentions to speech signals. This separation makes our speech recognition model more controllable. It provides new approaches to speaker adaptation and to coarticulation modeling. The eeectiveness of the proposed model was examined by speaker-dependent letter recognition experiments.
منابع مشابه
Spoken Term Detection for Persian News of Islamic Republic of Iran Broadcasting
Islamic Republic of Iran Broadcasting (IRIB) as one of the biggest broadcasting organizations, produces thousands of hours of media content daily. Accordingly, the IRIBchr('39')s archive is one of the richest archives in Iran containing a huge amount of multimedia data. Monitoring this massive volume of data, and brows and retrieval of this archive is one of the key issues for this broadcasting...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملProduction-Oriented Models for Speech Recognition
Acoustic modeling in speech recognition uses very little knowledge of the speech production process. At many levels our models continue to model speech as a surface phenomenon. Typically, hidden Markov model (HMM) parameters operate primarily in the acoustic space or in a linear transformation thereof; state-to-state evolution is modeled only crudely, with no explicit relationship between state...
متن کاملSpeaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation
A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1992